DURANEX® PBT
Grade Catalog

Polybutylene Terephthalate (PBT)

DURANEX®

3405

EF2001/ED3002

HB, Standard

POLYPLASTICS CO., LTD.

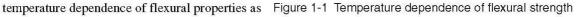
Introduction

DURANEX® **PBT** 3300 is offered as a general-purpose glass fiber-reinforced grade with a fiber loading of 30% but in

applications where high strength and high stiffness are demanded, we offer two suitable grades in 3400 (with a 40% glass fiber loading), and **3405** (with a 45% glass fiber loading).

General Properties of 3405

table1-1 General Properties (ISO)


tablet-1 General Properties (150)						
	Unit		HB, Standard			
Item		Test Method	3405			
			GF45% Reinforced			
Color		EF2001/ED3002				
ISO(JIS)quality-of-the-material display:	ISO11469 (JIS K6999)	>PBT-GF45<				
Density	g/cm³	ISO 1183	1.7			
Water absorption (23°C,24hrs,1mmt)	%	ISO 62	0.1			
Tensile strength	MPa	ISO 527-1,2	162			
Strain at break	%	ISO 527-1,2	1.7			
Flexural strength	MPa	ISO 178	254			
Flexural modulus	MPa	ISO 178	14,500			
Charpy notched impact strength (23℃)	kJ/m²	ISO 179/1eA	16			
Temperature of deflection under load (1.8MPa)	$^{\circ}$ C	ISO 75-1,2	214			
Coefficient of linear thermal expansion (23 - 55℃、Flow direction)	x10⁻⁵/°C	Our standard	1			
Coefficient of linear thermal expansion (23 - 55℃、Transverse direction)	x10⁻⁵/°C	Our standard	7			
Electric strength (3mmt)	kV/mm	IEC 60243-1	24			
Volume resistivity	Ω·cm	IEC 60093	3 × 10 ¹⁶			
Volume resistivity (Our standard)	Ω·cm		-			
Tracking resistance (CTI)	V	IEC 60112	-			
Rockwell hardness	M(Scale)	ISO2039-2	100			
Flammability		UL94	НВ			
The yellow card File No.			E213445			
Appropriate List number of Ministerial Ordinance for Export Trade Control			Item 16 of Appendix -1			

All figures in the table are the typical values of the material and not the minimum values of the material specifications.

In addition, Figures 1-1 and 1-2 show the

examples of the temperature dependence of mechanical properties. The dart drop impact strength, which is considered representative of practical impact properties, is also superior for 3400 and 3405 when compared with 3300.

Figure 1-3 compares an example of dart drop impact strength for a flat plate molded from 3400 with one molded from 3300.

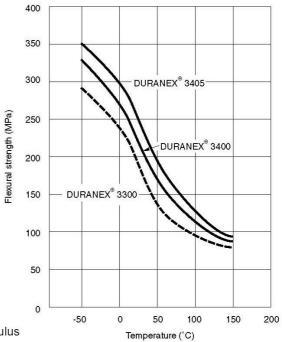


Figure 1-2 Temperature dependence of flexural modulus

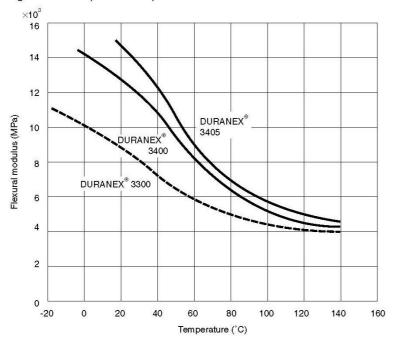
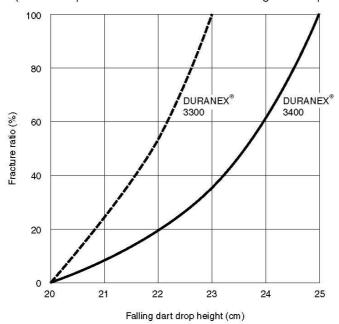
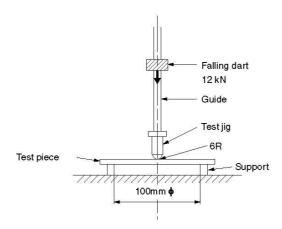




Figure 1-3 Dart drop impact strength for DURANEX® 3400 (relationship between fracture ratio and falling dart drop height)

As shown in the diagram below, a flat plate test piece ($120\times120\times3$ mm) is placed on a support ($100~\text{mm}\,\phi$), and after the test jig has been set, a weighted dart is dropped, and the dart's drop height is correlated with the fracture ratio.

2. Thermal properties of DURANEX® 3400 and 3405

As indicated by **Table 2-1**, the thermal properties of **3400** and **3405** hardly vary from those of 3300. However, the linear coefficient of thermal expansion is slightly higher for **3405**.

Table 2-1 Thermal properties of DURANEX® 3400 and 3405

Item		Test Method (ASTM)	Unit	DURANEX® 3405	DURANEX® 3400	DURANEX® 3300
Melting point		=	°C	228	228	228
DTUL * (1.8	2 MPa)	D648	°C	214	2 ~ 4	213
Thermal	Flow Direction		10⁵/°C	1.5	1.5	2.0
	Transverse Direction	-		12	12	12.5

^{*} Using an annealed test piece.

^{** 30 ~ 140°}C value

3. Processing characteristics of DURANEX® 3400 and 3405

3.1 Flow characteristics

As shown in Table 3-1, which indicates test results from a bar flow length test mold, the flowability of 3400 is somewhat lower than that of 3300. The flowability of 3405 is even lower than that of 3400. It is therefore recommended that the cylinder and mold temperatures be maintained at slightly higher temperatures than indicated below when molding.

Table 3-1 Flow lengths of DURANEX® 3400 and 3405 (mm)

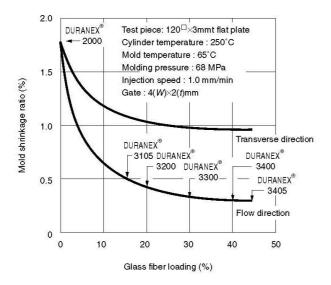
(2mmt)

Grade Injection Pressure	DURANEX® 3405	DURANEX® 3400	DURANEX®
49MPa	135	160	225
73МРа	185	220	295
98MPa	220	270	350

Processing parameters

Cylinder temperature :240-220-200°C

Mold temperature:65°C Injection speed:67mm/sec


Cycle time: 12 s holding phase/7 s cooling

Cavity thickness: 2 mm Gate: 20(W)×2(t)mm

3.2 Mold shrinkage ratio

As seen from Figure 3-2, there is no great difference in terms of mold shrinkage ratio compared with 3300.

Figure 3-2 Glass fiber loadings and mold shrinkage ratios for Duranex slow-burning grades

NOTES TO USERS

- All property values shown in this brochure are the typical values obtained under conditions prescribed by applicable standards and test methods.
- This brochure has been prepared based on our own experiences and laboratory test data, and therefore all data shown here are not always applicable to parts used under different conditions. We do not guarantee that these data are directly applicable to the application conditions of users and we ask each user to make his own decision on the application.
- It is the users' responsibility to investigate patent rights, service life
 and potentiality of applications introduced in this brochure.
 Materials we supply are not intended for the implant applications in
 the medical and dental fields, and therefore are not recommended for
 such uses.
- For all works done properly, it is advised to refer to appropriate technical catalogs for specific material processing.
- For safe handling of materials we supply, it is advised to refer to the Safety Data Sheet "SDS" of the proper material.
- This brochure is edited based on reference literature, information and data available to us at the time of creation. The contents of this brochure are subject to change without notice upon achievement of new data
- Please contact our office for any questions about products we supply, descriptive literatures or any description in this brochure.

DURANEX® is a registered trademark of Polyplastics Co., Ltd. in Japan and other countries.

POLYPLASTICS CO., LTD.

JR Shinagawa East Bidg.,

18-1, Konan 2-chome, Minato-ku, Tokyo, 108-8280 Japan

Tel: +81-3-6711-8610 Fax: +81-3-6711-8618

http://www.polyplastics.com/en/

(R240110-1404)